Background

- MYC is a master transcription factor (TF) critical for multiple cell physiologies.
- As a pleiotropic TF, MYC regulates the tumor microenvironment (TME) and impacts cancer cell initiation, growth, and survival.
- Although MYC expression is normally tightly controlled in normal cells, dysregulated MYC expression is a driver of oncogenic transformation in multiple tumor types. (e.g., HCC, NSCLC, Burkitt’s lymphoma).
- A direct MYC-targeting anti-cancer agent has remained elusive, largely due to the absence of a well-defined drug binding pocket and tight autoregulation.
- The MYC gene resides alone with its regulatory elements within an insulated genomic domain (IGD) and represents a potential therapeutic target for pre-transcriptional gene modulation via an epigenetic approach for the treatment of multiple cancers including HCC.
- We are developing programmable epigenomic mRNA designs to controllably tune gene expression, pre-transcriptionally, with defined durability with high specificity by targeting IGDs and regulatory elements within it.
- We have rationally designed Omega Epigenetic Controllers (MYC-OEC): clinical candidate OTX-002: development candidate MYC Lung OEC; and mouse sequence surrogate muMYC OEC) to downregulate MYC expression, thereby selectively killing cancer cells while sparing normal cells.
- We investigated the role of MYC-OECs in the modulation of the TME and enhanced antitumor activity of checkpoint blockade inhibitors (CBI) in vivo.

Figure 1. Structure and Mechanism of Action of OECs

Omega Epigenetic Controller (OEC)

Mouse (mu)MYC OEC Decreases MYC mRNA and Protein and the Viability of Mouse Liver Cancer Cells

Figure 2. In vitro results in Hepa1-6 mouse liver cancer cells. Hepa1-6 mouse liver cancer cells were treated with muMYC OEC or control. The Hepa1-6 mouse liver cancer cell line was isolated from Hepa1-6 tumors treated with muMYC OEC in vivo.

Figure 3. OECs reduce interferon γ-induced surface expression of PD-L1 in HCC and NSCLC cell lines.

muMYC OEC Reduce Interferon γ-induced Surface Expression of PD-L1 in HCC and NSCLC Cell Lines

muMYC OEC Alone or in Combination With CBI Confers Immune Memory

Immune Cell Depletion Shows muMYC OEC Single Agent is Partially Driven Through Adaptive But Not Innate Immunity

Figure 4. muMYC OEC combination with checkpoint blockade inhibitors in Hepa1-6 syngeneic mouse model.

Figure 5. Combination of muMYC OEC and anti-PD1 in Hepa1-6 syngeneic mouse model of HCC to assess limiting immune cell subsets to the tumor microenvironment using flow cytometry.

Conclusions

- MYC OECs downregulate MYC expression in HCC cells resulting in the loss of viability of MYC-addicted cancer cells.
- MYC OECs downregulate expression of PD-L1 protein on the surface of tumor cells.
- MYC OECs in combination with CBI (anti-PD-1 or anti-PD-L1) significantly reduce HCC xenograft tumor growth compared to either single agent alone at well-tolerated doses.
- Antitumor activity of MYC OECs is partially driven through an adaptive immune response (T-cells).
- MYC OECs as a single agent or in combination with CBI represses inhibitory Tregs to more effectively entrain the adaptive immune system to inhibit HCC tumors.

Contact Information

Copies of this poster obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission from ASCO® and the author of this poster.

Contact for the poster: exepedia@omgpto.com

Effect of MYC-Targeting Programmable Epigenomic mRNA Therapeutics on TME and Immunotherapy Responses

Omega Therapeutics, Cambridge, MA, USA

Poster: #437

Abstract: #4116